作者单位
摘要
1 天津大学光电信息技术教育部重点实验室, 天津 300072
2 崂山实验室, 山东 青岛 266234
3 电磁空间安全全国重点实验室, 天津 300308
海洋是丰富的资源宝库, 对海洋资源的开发和利用尤为重要。水空跨介质探测、通信、水下目标确定等技术一直是相关工作者关注的热点, 同时也是技术难题。声波作为一种机械波, 是水中良好的传播载体, 因此通过提取水下声波信息进行水空跨介质探测及通信不失为一种好方法, 但目前仍缺少完整的水下声信号传播模型及试验基础。本文提出一种基于有限元方法的水下声信号产生水面波纹振动的仿真模型, 并运用激光多普勒测振技术对水面波纹进行检测, 通过试验与仿真两种方式均能在水面以上精准得到水下声波信息。在相同水下声信号参数的条件下, 试验与仿真得到的水面波纹振幅大小一致, 验证了激光多普勒测振技术用于获取水下声波信息的可行性及所建立仿真模型的正确性, 为实现水空跨介质探测及通信的突破提供了试验基础及理论依据。
激光多普勒测振 跨介质探测 水声学原理 有限元方法 laser doppler vibration measurement cross-media detection hydroacoustic principle finite element method 
应用激光
2023, 43(3): 0127
邹锦阳 1,2张雅婷 1,2,*丁欣 1,2姚建铨 1,2
作者单位
摘要
1 天津大学 光电信息技术教育部重点实验室,天津 300072
2 天津大学 精密仪器与光电子工程学院,天津 300072
激光致声混凝土内部空洞检测技术是一种针对混凝土脱空鼓包现象的遥感检测技术,具有检测快速,非接触等特点,满足了在一些不方便进行接触式检测的场景下对混凝土内部空洞进行识别的需求。该技术的实现主要分为声波的激发以及声波的探测。文中聚焦声波激发这一部分,用加速度传感器替代激光测振仪,搭建了一套激光致声混凝土内部空洞检测系统,并对内部预制空洞的混凝土试块进行了检测。实验发现混凝土内部空洞的存在会改变空洞上方结构的抗弯刚度,当存在外部激励时,空洞上方的结构将会出现弯曲振动的现象,该振动的频率接近于振动结构的一阶固有频率。使用高功率密度的脉冲激光器可以方便地激发出缺陷区域的弯曲振动,当空洞缺陷较浅时,可以根据弯曲振动在频域的特征响应判断内部是否存在空洞。随着空洞深度的增加,空洞上方结构的抗弯刚度逐渐增强,弯曲振动的振幅减小,仅凭特征频率将难以实现内部空洞的识别。在这种情况下,可以利用表面振动信号的加速度能量谱来表征振动能量,通过振动能量的高低判断混凝土内部是否存在空洞。基于上述理论,成功探测到了混凝土内部深度为150 mm的空洞,验证了利用激光致声技术检测混凝土内部空洞的可行性。
激光技术 激光致声 混凝土 无损检测 laser technology laser acoustics concrete nondestructive testing 
红外与激光工程
2023, 52(1): 20220306
Jitao Li 1†Guocui Wang 2,3†Zhen Yue 1†Jingyu Liu 3[ ... ]Jianquan Yao 1,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
3 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
If a metalens integrates the circular polarization (CP) conversion function, the focusing lens together with circular-polarizing lens (CPL) in traditional cameras may be replaced by a metalens. However, in terahertz (THz) band, the reported metalenses still do not obtain the perfect and strict single-handed CP, because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP (LCP) and right-handed CP (RCP) components. In this paper, a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion. Also, we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states, which can simply manipulate the focusing for incident linear polarization (LP) THz wave in three polarization conversion states, including LP without conversion, LCP and RCP. Moreover, the polarization conversion behavior is reversible, that is, the THz metalens can convert not only the LP into arbitrary single-handed CP, but also the LCP and RCP into two perpendicular LP, respectively. The metalens is expected to be used in advanced THz camera, as a great candidate for traditional CPL and focusing lens group, and also shows potential application in polarization imaging with discriminating LCP and RCP.
terahertz metalens metamaterials metasurfaces dynamic phase single-handed circular polarization reversible conversion 
Opto-Electronic Advances
2022, 5(1): 210062
Zhen Yue 1†Jitao Li 1†Jie Li 1†Chenglong Zheng 1†[ ... ]Jianquan Yao 1,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 Department of Optoelectronic Information Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field. Here, a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization. Specifically, when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms, the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave. As function demonstrations, we have designed two types of metasurface zone plates: one is a focused linear polarizer, and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves. The simulated and measured results are consistent with theoretical expectations, suggesting that the proposed concept is flexible and feasible. Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field. Here, a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization. Specifically, when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms, the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave. As function demonstrations, we have designed two types of metasurface zone plates: one is a focused linear polarizer, and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves. The simulated and measured results are consistent with theoretical expectations, suggesting that the proposed concept is flexible and feasible. Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
metasurface zone plates polarization conversion terahertz 
Opto-Electronic Science
2022, 1(3): 210014
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Department of Optoelectronic Information Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Phase-modulated metasurfaces that can implement the independent manipulation of co- and cross-polarized output waves under circularly polarized (CP) incidence have been proposed. With this, we introduce one particular metasurface composed of meta-atoms with a phase difference of 2π/3 to generate specific elliptically polarized waves under various polarized incidences. Furthermore, a metasurface composed of these above meta-atoms and the meta-atoms with a phase difference of π/3 arranged in a certain rule can realize polarization conversion function between linearly polarized and CP states. The designs shed new light on multifarious optical devices and may further promote the development of metasurface polarization optics.
phase-modulated metasurfaces polarization conversion multiplexing 
Chinese Optics Letters
2022, 20(4): 043601
任康宇 1,2史伟 1,2张雅婷 1,2,*姚建铨 1,2,**
作者单位
摘要
1 天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072
2 光电信息技术科学教育部重点实验室, 天津 300072
对1550 nm铒镱共掺光纤放大器不同温度下的输出功率以及经过高温老化后的输出功率和光谱进行了实验研究。通过对比高温和常温下铒镱共掺光纤放大器的输出功率随泵浦功率的变化曲线,得出铒镱共掺光纤放大器在高温环境工作可提高输出功率,且不同长度的增益光纤对温度的敏感性不同的结论。以Arrhenius模型为加速老化模型对增益光纤进行温度为85 ℃、时间为876 h的加速老化实验,结果表明在常温环境工作5 y后铒镱共掺光纤放大器的输出功率将降低11.24%,放大的自发辐射噪声将增加4.1 dB,根据指数模型预测得到该放大器的使用寿命为7.57 y,这些结果为改善光纤放大器的输出性能和寿命预测提供了理论基础和实验依据。
光通信 光纤放大器 铒镱共掺光纤 温度特性 加速老化 功率 
光学学报
2022, 42(4): 0406002
作者单位
摘要
天津大学 激光与光电子研究所,天津 300072
基于单层金属手性谐振器的超表面在垂直入射条件下很难激发较大的手性光学响应,难以形成与电偶极矩不正交的面内磁偶极矩分量。光场在介质超原子中激发的位移电流可能引发面内磁矩,进而实现高效的手性光学响应。基于无损的全硅超表面在太赫兹波段实现了巨大的手性响应。手性硅柱中的泄露波导模式同时激发了面内电偶和磁偶极矩,从而引发了自旋选择的后向电磁辐射,进而实现了太赫兹波的手性光学响应。利用线栅偏振片搭建了偏振相关的时域光谱测试系统,测得透射光谱中的圆二色性峰值达0.2。这种制备简单的全硅超表面为太赫兹手性超器件的设计提供了新的思路,有望应用于太赫兹偏振成像、光谱检测等领域。
太赫兹波 手性 全介质超表面 圆偏振 terahertz wave chirality metasurface circular polarization 
太赫兹科学与电子信息学报
2021, 19(5): 800
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China
5 e-mail: yating@tju.edu.cn
6 e-mail: yzhang@mail.cnu.edu.cn
7 e-mail: jqyao@tju.edu.cn
Polarization manipulation of electromagnetic wave or polarization multiplexed beam shaping based on metasurfaces has been reported in various frequency bands. However, it is difficult to shape the beam with multi-channel polarization conversion in a single metasurface. Here, we propose a new method for terahertz wavefront shaping with multi-channel polarization conversion via all-silicon metasurface, which is based on the linear shape birefringence effect in spatially interleaved anisotropic meta-atoms. By superimposing the eigen- and non-eigen-polarization responses of the two kinds of meta-atoms, we demonstrate the possibility for high-efficiency evolution of several typical polarization states with two independent channels for linearly polarized waves. The measured polarization conversion efficiency is higher than 70% in the range of 0.9–1.3 THz, with a peak value of 89.2% at 1.1 THz. In addition, when more other polarization states are incident, combined with the integration of sub-arrays, we can get more channels for both polarization conversion and beam shaping. Simulated and experimental results verify the feasibility of this method. The proposed method provides a new idea for the design of terahertz multi-functional metadevices.
Photonics Research
2021, 9(10): 10001939
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 e-mail: dingxin@tju.edu.cn
3 e-mail: jqyao@tju.edu.cn
The preparation of high-quality perovskite films with optimal morphologies is important for achieving high-performance perovskite photodetectors (PPDs). An effective strategy to optimize the morphologies is to add antisolvents during the spin-coating steps. In this work, a novel environment-friendly antisolvent tert-amyl alcohol (TAA) is employed first to improve the quality of perovskite films, which can effectively regulate the formation of an intermediate phase staged in between a liquid precursor phase and a solid perovskite phase due to its moderate polarity and further promote the homogeneous nucleation and crystal growth, thus leading to the formation of high-quality perovskite films and enhanced photodetector performance. As a result, the responsivity of the PPD reaches 1.56 A/W under the illumination of 532 nm laser with the power density of 6.37 μW/cm2 at a bias voltage of -2 V, which is good responsivity for PPDs with the vertical structure and only CH3NH3PbI3 perovskite as the photosensitive material. The corresponding detectivity reaches 1.47×1012 Jones, while the linear dynamic range reaches 110 dB. These results demonstrate that our developed green antisolvent TAA has remarkable advantages for the fabrication of high-performance PPDs and can provide a reference for similar research work.
Photonics Research
2021, 9(5): 05000781
Jie Li 1†Chenglong Zheng 1†Guocui Wang 2,3Jitao Li 1[ ... ]Jianquan Yao 1,6,*
Author Affiliations
Abstract
1 Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 School of Mechanical Engineering, Jiangsu University, Zhenjiang 225009, China
5 e-mail: yating@tju.edu.cn
6 e-mail: jqyao@tju.edu.cn
Chiral metasurfaces based on asymmetric meta-atoms have achieved artificial circular dichroism (CD), spin-dependent wavefront control, near-field imaging, and other spin-related electromagnetic control. In this paper, we propose and experimentally verify a scheme for achieving high-efficiency chiral response similar to CD of terahertz (THz) wave via phase manipulation. By introducing the geometric phase and dynamic phase in an all-silicon metasurface, the spin-decoupled terahertz transmission is obtained. The giant circular dichroism-like effect in the transmission spectrum is observed by using a random phase distribution for one of the circular polarization components. More importantly, the effect can be adjusted when we change the area of the metasurface illuminated by an incident terahertz beam. In addition, we also demonstrate the spin-dependent arbitrary wavefront control of the transmitted terahertz wave, in which one of the circularly polarized components is scattered, while the other forms a focused vortex beam. Simulated and experimental results show that this method provides a new idea for spin selective control of THz waves.
Photonics Research
2021, 9(4): 04000567

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!